Biology I : Embedded Inquiry

Conceptual Strand

Understandings about scientific inquiry and the ability to conduct inquiry are essential for living in the 21st *century.*

Guiding Question

What tools, skills, knowledge, and dispositions are needed to conduct scientific inquiry?

	T	
Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.Inq.1 Recognize that science is a progressive endeavor that reevaluates and extends what is already accepted.	✓3210.Inq.1 Trace the historical development of a scientific principle or theory, such as cell theory, evolution, or DNA structure.	SPI 3210 Inq.1 Select a description or scenario that reevaluates and/or extends a scientific finding.
CLE 3210.Inq.2 Design and conduct scientific investigations to explore new phenomena, verify previous results, test how well a theory predicts,	✓3210.Inq.2 Conduct scientific investigations that include testable questions,	SPI 3210 Inq.2 Analyze the components of a properly designed scientific investigation.
and compare opposing theories. CLE 3210.Inq.3 Use appropriate tools and	verifiable hypotheses, and appropriate variables to explore new phenomena or verify the experimental results of others.	SPI 3210 Inq.3 Determine appropriate tools to gather precise and accurate data.
technology to collect precise and accurate data. CLE 3210.Inq.4 Apply qualitative and	✓3210.Inq.3 Select appropriate tools and technology to collect precise and accurate	SPI 3210 Inq.4 Evaluate the accuracy and precision of data.
quantitative measures to analyze data and draw conclusions that are free of bias.	quantitative and qualitative data.	SPI 3210 Inq.5 Defend a conclusion based on scientific evidence.
CLE 3210.Inq.5 Compare experimental evidence and conclusions with those drawn by	✓3210.Inq.4 Determine if data supports or contradicts a hypothesis or conclusion.	SPI 3210 Inq.6 Determine why a conclusion is free of bias.
others about the same testable question.	✓3210.Inq.5 Compare or combine experimental evidence from two or more	SPI 3210 Inq.7 Compare conclusions that

CLE 3210.Inq.6 Communicate and defend	investigations.	offer different, but acceptable explanations
scientific findings.	✓3210.Inq.6 Recognize, analyze, and	for the same set of experimental data.
	evaluate alternative explanations for the same	
	set of observations.	
	✓3210.Inq.7 Analyze experimental results	
	and identify possible sources of experimental error.	
	✓3210.Inq.8 Formulate and revise scientific	
	explanations and models using logic and	
	evidence.	

Biology I: Embedded Technology & Engineering

Conceptual Strand

Society benefits when engineers apply scientific discoveries to design materials and processes that develop into enabling technologies.

Guiding Question

How do science concepts, engineering skills, and applications of technology improve the quality of life?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.T/E.1 Explore the impact of	✓3210.T/E.1 Select appropriate tools to	SPI 3210.T/E.1 Distinguish among tools and
technology on social, political, and economic	conduct a scientific inquiry.	procedures best suited to conduct a specified
systems.		scientific inquiry.
	✓3210.T/E.2 Apply the engineering design	
CLE 3210.T/E.2 Differentiate among elements	process to construct a prototype that meets	SPI 3210.T/E.2 Evaluate a protocol to

of the engineering design cycle: design constraints, model building, testing, evaluating, modifying, and retesting.

CLE 3210.T/E.3 Explain the relationship between the properties of a material and the use of the material in the application of a technology.

CLE 3210.T/E.4 Describe the dynamic interplay among science, technology, and engineering within living, earth-space, and physical systems.

developmentally appropriate specifications.

✓3210.T/E.3 Explore how the unintended consequences of new technologies can impact human and non-human communities.

✓3210.T/E.4 Present research on current bioengineering technologies that advance health and contribute to improvements in our daily lives.

✓3210.T/E.5 Design a series of multi-view drawings that can be used by other students to construct an adaptive design and test its effectiveness.

determine the degree to which an engineering design process was successfully applied.

SPI 3210.T/E.3 Evaluate the overall benefit to cost ratio of a new technology.

SPI 3210.T/E.4 Use design principles to determine how a new technology will improve the quality of life for an intended audience.

Biology I: Embedded Mathematics

Conceptual Strand

Science applies mathematics to investigate questions, solve problems, and communicate findings.

Guiding Question

What mathematical skills and understandings are needed to successfully investigate biological topics?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.Math.1 Understand the mathematical principles associated with the science of biology.	✓3210.Math.1 Choose and construct appropriate graphical representations for a data set.	SPI 3210.Math.1 Interpret a graph that depicts a biological phenomenon.

CLE 3210.Math.2 Utilize appropriate mathematical equations and processes to understand biological concepts.	✓3210.Math.2 Analyze graphs to interpret biological events.	SPI 3210.Math.2 Predict the outcome of a cross between parents of known genotype.
	✓3210.Math.3 Make decisions about units, scales, and measurement tools that are appropriate for investigations involving measurement.	
	✓3210.Math.4 Select and apply an appropriate method to evaluate the reasonableness of results.	
	✓3210.Math.5 Apply and interpret rates of change from graphical and numerical data.	
	✓3210.Math.6 Apply probabilistic reasoning to solve genetic problems.	

Conceptual Strand 1		
All living things are made of cells that perform	rm functions necessary for life.	
Cuiding Question 1		
Guiding Question 1	4114	
How are cells organized to carry on the proc	cesses of life?	

CLE 3210.1.1 Compare the structure and	✓3210.1.1 Investigate cells using a compound	SPI 3210.1.1 Identify the cellular organelles
function of cellular organelles in both	microscope.	associated with major cell processes.
prokaryotic and eukaryotic cells.		
	✓3210.1.2 Construct a model of a prokaryotic	SPI 3210.1.2 Distinguish between
CLE 3210.1.2 Distinguish among the structure	or eukaryotic cell.	prokaryotic and eukaryotic cells.
and function of the four major organic	(2210.1.2.5)	CDI 2210 1 2 D' / ' ' 1
macromolecules found in living things.	✓3210.1.3 Design a graphic organizer that	SPI 3210.1.3 Distinguish among proteins,
CLE 3210.1.3 Describe how enzymes regulate	compares proteins, carbohydrates, lipids, and nucleic acids.	carbohydrates, lipids, and nucleic acids.
chemical reactions in the body.	nucleic acids.	SPI 3210.1.4 Identify positive tests for
chemical reactions in the body.	✓3210.1.4 Conduct tests to detect the	carbohydrates, lipids, and proteins.
CLE 3210.1.4 Describe the processes of cell	presence of proteins, carbohydrates, and	carbonydrates, ripids, and proteins.
growth and reproduction.	lipids.	SPI 3210.1.5 Identify how enzymes control
	r	chemical reactions in the body.
CLE 3210.1.5 Compare different models to	√3210.1.5 Design a model that illustrates	·
explain the movement of materials into and out	enzyme function.	SPI 3210.1.6 Determine the relationship
of cells.		between cell growth and cell reproduction.
	✓3210.1.6 Demonstrate the movement of	
	chromosomes during mitosis in plant and	SPI 3210.1.7 Predict the movement of water
	animal cells.	and other molecules across selectively
	(2210.1.7.D	permeable membranes.
	✓3210.1.7 Design and conduct an experiment	CDI 2210.1.9 Commons and contract active
	to investigate the effect of various solute concentrations on water movement in cells.	SPI 3210.1.8 Compare and contrast active and passive transport.
	Concentrations on water movement in cens.	and passive transport.
	✓3210.1.8 Analyze experimental data to	
	distinguish between active and passive	
	transport.	

Biology I : Standard 2 - Interdependence

Conceptual Strand 2

All life is interdependent and interacts with the environment.

Guiding Question 2

How do living things interact with one another and with the non-living elements of their environment?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.2.1 Investigate how the dynamic equilibrium of an ecological community is associated with interactions among its organisms.	✓3210.2.1 Analyze human population distribution graphs to predict the impact on global resources, society, and the economy.	SPI 3210.2.1 Predict how population changes of organisms at different trophic levels affect an ecosystem.
CLE 3210.2.2 Analyze and interpret population data, graphs, or diagrams.	✓3210.2.2 Construct and maintain a model of an ecosystem. ✓3210.2.3 Monitor and evaluate changes in a	SPI 3210.2.2 Interpret the relationship between environmental factors and fluctuations in population size.
CLE 3210.2.3 Predict how global climate change, human activity, geologic events, and the introduction of non-native species impact an ecosystem.	yeast population. ✓3210.2.4 Investigate an outdoor habitat to identify the abiotic and biotic factors, plant	SPI 3210.2.3 Determine how the carrying capacity of an ecosystem is affected by interactions among organisms.
CLE 3210.2.4 Describe the sequence of events associated with biological succession.	and animal populations, producers, consumers, and decomposers.	SPI 3210.2.4 Predict how various types of human activities affect the environment.
	✓3210.2.5 Conduct research on how human influences have changed an ecosystem and communicate findings through written or oral presentations.	SPI 3210.2.5 Make inferences about how a specific environmental change can affect the amount of biodiversity.

✓3210.2.6 Describe a sequence of events that illustrates biological succession.	SPI 3210.2.6 Predict how a specific environmental change may lead to the extinction of a particular species.
	SPI 3210.2.7 Analyze factors responsible for the changes associated with biological succession.

Biology I : Standard 3 – Flow of Matter and Energy

Conceptual Strand 3

Matter cycles and energy flows through the biosphere.

Guiding Question 3

What are the scientific explanations for how matter cycles and energy flows through the biosphere?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.3.1 Analyze energy flow through an	✓3210.3.1 Track energy flow through an	SPI 3210.3.1 Interpret a diagram that
ecosystem.	ecosystem.	illustrates energy flow in an ecosystem.
CLE 3210.3.2 Distinguish between aerobic and anaerobic respiration.	✓3210.3.2 Construct a concept map to differentiate between aerobic and anaerobic respiration.	SPI 3210.3.2 Distinguish between aerobic and anaerobic respiration.
CLE 3210.3.3 Investigate the relationship		SPI 3210.3.3 Compare and contrast
between the processes of photosynthesis and	✓3210.3.3 Conduct experiments to	photosynthesis and cellular respiration in
cellular respiration.	investigate photosynthesis and cellular	terms of energy transformation.
	respiration.	
CLE 3210.3.4 Describe the events which occur		SPI 3210.3.4 Predict how changes in a

during the major biogeochemical cycles.	✓3210.3.4 Investigate the process of fermentation.	biogeochemical cycle can affect an ecosystem.
	✓3210.3.5 Construct models of the carbon, oxygen, nitrogen, phosphorous, and water cycles.	

Biology I: Standard 4 - Heredity

Conceptual Strand 4

Organisms reproduce and transmit hereditary information.

Guiding Question 4

What are the principal mechanisms by which living things reproduce and transmit hereditary information from parents to offspring?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.4.1 Investigate how genetic	✓3210.4.1 Use models of DNA, RNA, and	SPI 3210.4.1 Identify the structure and
information is encoded in nucleic acids.	amino acids to explain replication and protein synthesis.	function of DNA.
CLE 3210.4.2 Describe the relationships among		SPI 3210.4.2 Associate the process of DNA
genes, chromosomes, proteins, and hereditary	✓3210.4.2 Complete and interpret genetic	replication with its biological significance.
traits.	problems that illustrate sex linkage, co-	
	dominance, incomplete dominance, multiple	SPI 3210.4.3 Recognize the interactions
CLE 3210.4.3 Predict the outcome of	alleles, and polygenic inheritance.	between DNA and RNA during protein
monohybrid and dihybrid crosses.		synthesis.
	✓3210.4.3 Apply data to complete and	
CLE 3210.4.4 Compare different modes of	interpret a genetic pedigree.	SPI 3210.4.4 Determine the probability of a
inheritance: sex linkage, co-dominance,		particular trait in an offspring based on the

incomplete dominance, multiple alleles, and polygenic traits.

CLE 3210.4.5 Recognize how meiosis and sexual reproduction contribute to genetic variation in a population.

CLE 3210.4.6 Describe the connection between mutations and human genetic disorders.

CLE 3210.4.7 Assess the scientific and ethical ramifications of emerging genetic technologies.

✓3210.4.4 Describe how the process of meiosis controls the number of chromosomes in a gamete.

✓3210.4.5 Associate gene mutation with changes in a DNA molecule.

✓3210.4.6 Design an informational brochure to describe a human genetic disorder.

✓3210.4.7 Conduct research to explore the scientific and ethical issues associated with emerging gene technologies.

genotype of the parents and the particular mode of inheritance.

SPI 3210.4.5 Apply pedigree data to interpret various modes of genetic inheritance.

SPI 3210.4.6 Describe how meiosis is involved in the production of egg and sperm cells.

SPI 3210.4.7 Describe how meiosis and sexual reproduction contribute to genetic variation in a population.

SPI 3210.4.8 Determine the relationship between mutations and human genetic disorders.

SPI 3210.4.9 Evaluate the scientific and ethical issues associated with gene technologies: genetic engineering, cloning, transgenic organism production, stem cell research, and DNA fingerprinting.

Biology I: Standard 5 - Biodiversity and Change

Conceptual Strand 5

A rich variety and complexity of organisms have developed in response to changes in the environment.

Guiding Question 5

How does natural selection explain how organisms have changed over time?

Course Level Expectations	Checks for Understanding	State Performance Indicators
CLE 3210.5.1 Associate structural, functional, and behavioral adaptations with the ability of organisms to survive under various environmental conditions.	✓3210.5.1 Create graphic organizers to demonstrate the relationship between form and function in representative organisms. ✓3210.5.2 Explain how natural selection	SPI 3210.5.1 Compare and contrast the structural, functional, and behavioral adaptations of animals or plants found in different environments.
CLE 3210.5.2 Analyze the relationship between form and function in living things.	operates in the development of a new species. ✓ 3210.5.3 Associate fossil data with	SPI 3210.5.2 Recognize the relationship between form and function in living things.
CLE 3210.5.3 Explain how genetic variation in a population and changing environmental conditions are associated with adaptation and the emergence of new species.	biological and geological changes in the environment. ✓3210.5.4 Analyze a variety of models, samples, or diagrams to demonstrate the	SPI 3210.5.3 Recognize the relationships among environmental change, genetic variation, natural selection, and the emergence of a new species.
CLE 3210.5.4 Summarize the supporting evidence for the theory of evolution.	genetic relatedness of organisms. ✓3210.5.5 Use a dichotomous key to identify	SPI 3210.5.4 Describe the relationship between the amount of biodiversity and the ability of a population to adapt to a changing
CLE 3210.5.5 Explain how evolution contributes to the amount of biodiversity.	an unknown organism.	environment. SPI 3210.5.5 Apply evidence from the fossil
CLE 3210.5.6 Explore the evolutionary basis of modern classification systems.		record, comparative anatomy, amino acid sequences, and DNA structure that support modern classification systems.
		SPI 3210.5.6 Infer relatedness among different organisms using modern classification systems.